

STATISTICAL ANALYSIS PROCEDURE OF RANDOMISED BLOCK DESIGN (RBD) FOR HORTICULTURAL DATA ON POTATO PLANT

V. Sekhar¹, K. Umakrishna¹, V. Srinivasa Rao² and T. Thomson³

¹Department of Statistics, College of Horticulture, Venkataramannagudem, Dr. YSR Horticultural University, West Godavari, (Andhra Pradesh) India. ²Department of Statistics, Agricultural College, Bapatla, Acharya NG Ranga Agricultural University, Guntur, (Andhra Pradesh) India. ³College of Horticulture, Venkataramannagudem, Dr. YSR Horticultural University,

West Godavari, (Andhra Pradesh) India.

Abstract

This paper was attempted to find out best treatment among 10 treatments by using Randomised Block Design analysis. RBD is most suitable for Agricultural field experiments when fertility gradient is in one direction. In this design, the treatments are assigned to the experimental plots in a random manner in blocks. This article considers the application, advantages and disadvantages and statistical analysis of randomized block designs.

Key words: RBD, ANOVA, CD.

Introduction

In RBD, the entire experimental material is divided into number of homogeneous blocks. Each and every treatment should appear only once in each block.;

RBD follows all the basic principles of Experimental Designs

- 1. Replication
- 2. Randomisation
- 3. Local Control
- RBD follows ANOVA-II way classification

Assumptions of ANOVA

- 1. Independence of cases this is an assumption of the model that simplifies the statistical analysis.
- 2. Normality the distributions of the residuals are normal.
- 3. Equality (or homogeneity) of variances, called homoscedasticity.

Advantages of RBD

1. This design has complete flexibility, *i.e.*, any

number of replications can be included in this design

- 2. The amount of information got in RBD is more as compared CRD.
- 3. The statistical analysis is simple and easy. Even some observations are missing for certain treatments, the data can be analysed by the missing plot technique.

Disadvantages of RBD

- 1. When the number of treatments is increased, the block size will increase.
- 2. If the block size is large maintaining homogeneity is difficult and hence when more number of treatments is present this design may not be suitable.

Materials and Method

A varietal trial is conducted on Potato (*Solanum tuberossum*) with 10 varieties and each variety is replicated 3 times at College of Horticulture, Venkataramannagudem. Yield per plant in gms are as follows. Analyse the data and draw your conclusion

^{*}Author for correspondence : E-mail : sekhar30mscstat@gmail.com

Null Hypothesis for Treatments

* *	T 1	•		• • • •	1:00		
$\boldsymbol{\mu}$	- horo	10	100	aigmition t	dittoronoo	omono	moor
	THEFE	18	11()	SIQUILICATI	(IIII) elence	annong	пеа
110.	1 1101 0	10	110	Digititutit		unions	moun
				1 /			

			U
Treatments	R-I	R-II	R-III
T ₁	138.20	153.40	170.40
T ₂	173.80	187.00	208.20
T ₃	218.40	216.20	247.20
T ₄	250.20	273.40	247.00
T ₅	163.40	206.60	157.20
T ₆	207.80	173.00	237.40
T ₇	268.20	180.60	226.40
T ₈	193.20	178.20	126.60
T ₉	236.80	182.60	166.20
T ₁₀	266.80	184.60	185.40

Sol:

	Replications						
Treatments	R ₁	R ₂	R ₃	Treatment Totals	Treatment Means		
T ₁	138.20	153.40	170.40	T ₁ =462	$\alpha_1 = \frac{T_1}{r} = \frac{462}{3} = 154$		
T ₂	173.80	187.00	208.20	T ₂ =569	$\alpha_2 = \frac{T_2}{r} = \frac{569}{3} = 189.67$		
T ₃	218.40	216.20	247.20	T ₃ =681.80	$\alpha_3 = \frac{T_3}{r} = \frac{681.8}{3} = 227.27$		
T ₄	250.20	273.40	247.00	T ₄₌ 770.60	$\alpha_4 = \frac{T_4}{r} = \frac{770.60}{3} = 256.87$		
T ₅	163.40	206.60	157.20	T ₅ =527.20	$\alpha_5 = \frac{T_5}{r} = \frac{527.20}{3} = 175.73$		
T ⁶	207.80	173.00	237.40	T ₆ =618.20	$\alpha_6 = \frac{T_6}{r} = \frac{618.20}{3} = 206.07$		
T ₇	268.20	180.60	226.40	T ₇ =675.20	$\alpha_7 = \frac{T_7}{r} = \frac{675.20}{3} = 225.07$		
T ₈	193.20	178.20	126.60	T ₈ =498	$\alpha_8 = \frac{T_8}{r} = \frac{498}{3} = 166$		
T ₉	236.80	182.60	166.20	T ₉ =585.60	$\alpha_9 = \frac{T_9}{r} = \frac{585.60}{3} = 195.20$		
T ₁₀	266.80	184.60	185.40	T ₁₀ =636.80	$\alpha_{10} = \frac{T_{10}}{r} = \frac{636.80}{3} = 212.27$		
Replication Totals	R ₁ =2116.80	R ₂ =1935.60	R ₃ =1972.00	GT=6024.40			
Replication	$\beta_1 = \frac{R_1}{k} =$	$\beta_2 = \frac{R_2}{k} =$	$\beta_3 = \frac{R_3}{k} =$				
Means	$\frac{2116.8}{10} = 211$	$\frac{193560}{10} = 193.56$	$\frac{1972}{10} = 197.21$				

The mathematica model for RBD is $x_{ij} = \mu + \alpha_i + \beta_j + \epsilon_{ij}$.

of varieties

$$H_0: \alpha_1 = \alpha_2 = \dots = \alpha_{10}$$

Alternative Hypothesis for Treatments

 H_1 : There is significant difference among mean of varieties

$$H_1: \alpha_1 \neq \alpha_2 \neq \dots \neq \alpha_{10}$$

Null Hypothesis for Blocks

 H_0 : There is no significant difference among mean of Replications / Blocks

$$H_0: \beta_1 = \beta_2 = \beta_3$$

Alternative Hypothesis for Treatments

 H_1 : There is significant difference among mean of Replications / Blocks

$$H_1: \beta_1 \neq \beta_2 \neq \beta_3$$

k is no. Of varieties = 10

r is no. Of replications = 3

$$GM = \frac{GT}{kr} = \frac{6024.40}{10*3} = \frac{6024.40}{30} = 200.8133$$

Prepare the following ANOVA Table

$$CF = \frac{GT^2}{kr} = \frac{6024.40^2}{10*3} = \frac{6024.40*6024.40}{30}$$
$$= \frac{36293395}{30} = 1209780$$
$$Total SS = \sum_{i=1}^{k} \sum_{j=1}^{r} x_{ij}^2 - CF = (x_{1,1}^2 + x_{1,2}^2 + \dots + x_{10,3}^2) - CF$$
$$= (138.2^2 + 153.4^2 + \dots + 185.4^2) - 1209780$$
$$= 1255244 - 1209780 = 45464.39$$
$$Trt SS = \frac{T_1^2 + T_2^2 + \dots + T_k^2}{r} - CF$$
$$= \frac{462^2 + 569^2 + \dots + 636.8^2}{3} - 1209780$$

$$=\frac{3708332}{3} - 1209780 = 1236111 - 1209780 = 26330.93$$

Rep/Block
$$SS = \frac{R_1^2 + R_2^2 + \dots + R_r^2}{k} - CF$$

Sources of Variation	Degrees of freedom	Sum of Squares	Mean Sum of Squares	F-Cal	F-tab
Treatments	k-110-1=9	Trt SS=26330.93	$Trt MSS = \frac{Trt.SS}{k-1}$	Trt.MSS ErrorMSS	$F_{k-1,(k-1)(r-1)}$
			$=\frac{26330.93}{9}=2925.659$	$\frac{2925.659}{960.8862} = 3.0448*$	$F_{9,18} = 2.4563 \mathrm{at}5\%$
					$F_{9,18} = 3.5971 \text{ at } 1\%$
Replications	r-13-1=2	Rep SS=1837.5147	$\operatorname{Rep} SS MSS = \frac{\operatorname{Rep} SS}{r-1}$	Rept.MSS Error MSS	$F_{r-1,(k-1)(r-1)}$
			$=\frac{1837.5147}{2}=918.7573$	$\frac{918.7573}{960.8862} = 0.9562$	$F_{2,18} = 3.5546$ at 5%
					$F_{2,18} = 6.0129 \mathrm{at} 1\%$
Error	(k-1)(r-1)(10-1)	Error SS=17295.95	$\operatorname{Error} MSS = \frac{Error.SS}{(k-1) - (r-1)}$		
	(3-1)=18		$=\frac{17295.95}{18}=960.8862$		
Total	kr-110*3-1=29	Total SS=45464.39			

$$= \frac{2116.80^2 + 1935.6^2 + 1972^2}{10} - 1209780$$
$$= \frac{12116174}{10} - 1209780$$
$$= 1211617.4 - 1209780 = 1837.5147$$
Error *SS* = Total *SS* - Trt *SS* - Rep *SS*

=45464.39-26330.93-1837.5147=17295.95

Analysis procedure of RBD in MS-Excel

In MS-Excel sheet, enter data as below picture

			5• ∂	Ŧ	
F	File Home	Insert	Page Lay	out For	mulas
Pa	Clipboard	• Painter	Times New	Roma + 12 + 田 + Font	- / & -
A	1 *	: ×	$\sqrt{-f_x}$	Treatr	ments
1	A	В	С	D	E
1	Treatments	R-I	R-II	R-III	
2	Tl	138.2	153.4	170.4	
3	T2	173.8	187	208.2	
4	T3	218.4	216.2	247.2	
5	T4	250.2	273.4	247	
6	T5	163.4	206.6	157.2	
7	Tó	207.8	173	237.4	
8	T7	268.2	180.6	226.4	
9	T 8	193.2	178.2	126.6	
10	T9	236.8	182.6	166.2	
11	T10	266.8	184.6	185.4	

Select Data menu in Excel →choose Data analysis

Data Analysis		? >
Analysis Tools		OK
Anova: Single Factor	^	UK.
Anova: Two-Factor With Replication	100	Cancel
Anova: Two-Factor Without Replication		-
Correlation		Halo
Covariance		Ticib
Descriptive Statistics		
Exponential Smoothing		
F-Test Two-Sample for Variances		
Fourier Analysis		
Histogram	~	

choose Anova: Two Factor Without Replication \rightarrow press OK

Input			01
Input Range:	SAS1:SDS11	Ť	OK
✓ Labels			Cancel
Alpha: 0.05			Help
Output options		_	
Output Range:	SFS1	Ť	
O New Worksheet Ply:			

Give Input Range: A1:D$11 \rightarrow Put tick mark$ $on Labelsn \rightarrow Give Alpha: 0.05 for 5% level of$ $significance <math>\rightarrow$ Give output RangeF\$1 under Output options (*i.e.* Output will display from F1 cell) \rightarrow press OK

F	G	H	I	J	K	L
Anova: Two-Factor V	Vithout Rep	lication				
SUMMARY	Count	Sum	Average	Variance		
T1	3	462	154	259.48		
T2	3	569	189.6667	301.1733		
T3	3	681.8	227.2667	299.2133		
T4	3	770.6	256.8667	207.5733		
T5	3	527.2	175.7333	724.1733		
T6	3	618.2	206.0667	1039.093		
77	3	675.2	225.0667	1919.773		
T8	3	498	166	1220.52		
Т9	3	585.6	195.2	1365.16		
T10	3	636.8	212.2667	2230.573		
R-I	10	2116.8	211.68	1990.491		
R-II	10	1935.6	193.56	1082.212		
R-III	10	1972	197.2	1774.729		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Rows	26330.93	9	2925.659	3.04475	0.02122	2.456281
Columns	1837.515	2	918.7573	0.956156	0.403048	3.554557
Error	17295.95	18	960.8862			
Total	45464.39	29				

In the ANOVA table of above picture, Rows means Treatments or Varieties and Columns means Blocks or replications.

Results and Discussions

Here F-cal (3.0488) value is > F-tab at 5% level of

significance with $F_{k-1,(k-1)(r-1)}F_{9,18} = 2.4563$

So, we reject Null Hypothesis for treatments at 5% level of significance. *i.e.*, there is slightly significant difference among variety means.

Standard Errors

$$SEM = \sqrt{\frac{\text{Error } MSS}{r}} = \sqrt{\frac{960.8862}{3}} = 17.8968$$

 $SED = \sqrt{2} * SEM = \sqrt{2} * 17.8968 = 1.41 * 17.8968 = 25.3099$

$$CD = SED * t_{tab}$$
 value at error $d_{f} = 25.3099 * 2.1009 = 53.1741$

Bar notation

T ₄	T ₃	T ₇	T ₁₀	T ₆	T ₉	T ₂	T ₅	T ₈	T ₁
256.87	227.27	225.07	212.27	206.07	195.20	189.67	175.73	166.00	154.00

We arrange the treatment means into decreasing order

1. Those pairs underscored are non-significant

2. Those pairs not scored are significant

Among 10 treatments, T_4 is best treatment

 T_4 treatment is significantly different from T_9 , T_2 , T_5 , T_8 , T_1

$$CV\% = \sqrt{\frac{EMSS}{GM}} *100 = \sqrt{\frac{960.8862}{200.81}} *100 =$$

$$\frac{30.9982}{200.81} * 100 = 0.1544 * 100 = 15.44\%$$

Less CV% indicates more consistency of data.

References

- Agarwal , B.L. (2009). Programmed Statistics (Questions-Answers) 2nd Edition., New Age International Publishing Limited, New Delhi.
- Cini Varghese, MS-Excel:Statistical Procedures, IASRI, Library Avenue, New Delhi-110012.
- Nageswara Rao, G (2007). Statistics for Agricultural Sciences, BS Publications, Hyderabad (Second Edition).

Rangaswamy, R. (2010). A text Book of Agricultural Statistics, New Age International Publishing Limited, Hyderabad.

Srinivasa Rao, V. and R. Srinivasulu (2013). Practical manual of STCA-101 (for class use only), Agricultural College, Bapatla.